Подпишись и читай
самые интересные
статьи первым!

Правильные пропорции раствора для штукатурки стен. Как приготовить раствор для штукатурки стен

Штукатурка или слой отделочного материала, нанесённый на поверхность во время строительных работ, является обязательным этапом, предшествующим финишной отделке.

Это специально подготовленная которая после высыхания застывает, образуя твёрдую ровную поверхность, готовую для окончательной обработки.

В большинстве случаев с её помощью производится исправление каких-либо дефектов, а также заделка технологических каналов, образуемых в процессе ремонта, например, при прокладке новой проводки. Поверхность становится ровной, гладкой и эстетичной.

Точные пропорции раствора для штукатурки стен позволяют подготовленной смеси после высыхания выполнять свою функцию и не рассыпаться с течением времени. Чтобы правильно её выбрать, необходимо иметь общее представление о разновидностях строительных смесей и их предназначении. Знание их основных компонентов и возможностей применения позволит без труда ориентироваться в существующем ассортименте и правильно применять решение по их использованию.

и их особенности

Отделка стен может использоваться снаружи или внутри помещения и делится на три основных вида:

  • стандартная, как защита от воздействия внешней среды (наружные стены) или исправления дефектов поверхности, включая выравнивание, заделку щелей, технологических каналов и подготовка к окончательной отделке финишными декоративными покрытиями, как правило, тонкослойными;
  • защитная, выполняющая функцию изолятора или экрана, например, подавляющая шум, сохраняющая тепло или предотвращающая проникновение излучения;
  • декоративная, используемая во время финишного покрытия (цветная, каменная, венецианская, графитовая).

Каждый вид характеризуется определённым составом, приготовление которого требует точной пропорции раствора для штукатурки стен.

Что такое строительная смесь

Чтобы подготовить раствор для штукатурки стен, пропорции должны включать вяжущий элемент (цемент, известь или гипс), заполнитель, как правило, песок и воду.

В зависимости от количества вяжущего компонента, они бывают:

  • тощие, отличающиеся отсутствием трещин, но плохой крепостью;
  • жирные, способные рассыпаться и усаживаться.

Тощие смеси легко соскальзывают с мастерка, жирные, наоборот, прилипают к нему. Задача любого строителя - подготовить раствор для штукатурки стен, пропорции у которого будут оптимальны.

Кроме этого, в готовый раствор обязательно добавляется пластификатор, облегчающий работу со смесью. Самым простым вариантом является обычное жидкое мыло или порошок для стирки, но существуют и специальные промышленные добавки.


Количество слоёв

Нанесение обычно происходит в три слоя, которые имеют индивидуальные пропорции раствора для штукатурки стен:

  • первый (обрызг) наносится слоем не менее 5 и не более 9 мм при заполнении всех неровностей и по виду похож на сметану;
  • второй (грунт) - это основной слой, который может наноситься несколько раз и имеет густоту теста;
  • третий (накрывка), наносится слоем не более 4 мм, обязательно на влажную поверхность, по консистенции похож на обрызг.

Когда идёт приготовление раствора для штукатурки стен, пропорции отличаются количеством связывающего вещества, чаще всего цемента. В первом слое его совсем немного, во втором количество увеличивается и в третьем становится максимальным.

Типы смесей

При отделке стен используются несколько основных типов составов. Сегодня применяются в основном три смеси:

  • цементная, самая распространённая и популярная, характеризуется наибольшей прочностью, но долгим периодом застывания;
  • глиняная, использующихся во время внутренних и наружных работ при обработке деревянных поверхностей;
  • известковая, недорогой аналог цементной смеси, часто используемая с гипсом, ускоряющая период застывания и повышения прочности.

Кроме этого, в зависимости от ситуации, могут также применяться другие варианты:

  • гипсовая - наиболее редко используемая из-за быстрого (в течение нескольких минут) начального застывания и полной фиксации уже через полчаса;
  • смешанная - отличающаеся использованием одновременно нескольких особых компонентов;
  • специальная - применяющаяся с определённой добавкой в зависимости от поставленной цели.

Одним из важных показателей, определяющих тип нужного раствора, является уровень влажности. В зависимости от микроклимата выбирается нужный состав. К самому универсальному и распространённому относится цементный раствор для штукатурки стен, пропорции изготовления которого известны даже любителю, и позволяют успешно его применять как снаружи, так и внутри помещения.

Цементный раствор

Самый надёжный, простой и повсеместно распространённый способ. Чтобы его сделать, необходимо чётко соблюдать очерёдность.

Работа начинается с подготовки всех компонентов и, в первую очередь, песка. Его необходимо высушить, после чего обязательно просеять. Затем тщательно очистить от всех комков, особенно глиняных. Песок красного или рыжего цвета использовать не желательно, это понижает качество готовой смеси и её эксплуатационные свойства, а использовать непросеянный и неочищенный вообще нельзя.

После просеивания можно начинать готовить для штукатурки стен. Пропорции изменяются в зависимости от типа используемого цемента. Например, применяя марку М400, на 1 часть цемента достаточно 4 составляющих песка. Если используется М500, количество частей увеличивается до пяти. Нарушение приводит к потере качества отделки и не допускается. Сухие компоненты тщательно перемешивают в заранее подготовленной ёмкости. Это можно сделать используя миксер, вставленный в перфоратор, лопату или бетономешалку.

Выбор способа зависит от необходимого объёма. Если предстоит самостоятельная работа, достаточно использования большого строительного ведра на 15 или 20 литров, в котором можно приготовить раствор для пропорции остаются прежние. Если работа производится нескольким людьми, имеет смысл применить большое корыто или бетономешалку.

В тщательно перемешанную смесь постепенно добавляют воду, доводя состав до состояния густой сметаны.


Особенности известкового раствора

С целью сокращения расходов иногда цемент заменяют что почти не отражается на качестве. Тем более что известковый и цементный раствор для штукатурки стен пропорции имеют практически одинаковые.

Его особенность состоит в применении только гашеной извести. Её довольно просто сделать в домашних условиях без особых затрат.

Приобретённую известь заливают тёплой, но не горячей водой в большой ёмкости, и после завершения реакции процеживают, обычно через марлю. Её можно использовать не раньше чем через сутки.

Известковая смесь

Подготовка раствора также предполагает соблюдение последовательности.

Сначала известь очищается от комков путём помешивания. Разрешается применение воды или песка в небольших количествах. Получив однородный состав, можно переходить к подготовке смеси.

Необходимый состав получается, если на одну часть известковой массы положить три песка, предварительно просеянного и очищенного. Вместе с песком постепенно вводится вода. Это продолжается, пока раствор не будет походить на густую однородную массу. После чего его можно использовать на протяжении 12 часов.

Особенности известкового раствора во время наружных работ

Обычно известковая смесь используется только в сухом климате. Если время обработки фасада лимитировано, пропорции раствора для штукатурки наружных стен включают небольшое количество гипса.

Это позволяет начинать ей застывать в течение нескольких минут, полностью отвердевая через полчаса.

Чтобы сделать раствор, на 3 литра готовой известкой смеси добавляют 1 кг гипса. Но надо обязательно учитывать срок застывания и объём работ, иначе она затвердеет раньше времени.


Глиняный раствор

Использование глины до сих пор является достаточно распространённым в деревянных домах. Чтобы приготовить крепкий глиняный раствор для штукатурки стен, пропорции должны включать цемент, известь или гипс.

Понадобится глинозём, желательно жирный, который замачивается на несколько часов. Смесь важно постоянно перемешивать и добавлять воду, пока она не приобретёт густоту.

Самый простой способ приготовления состоит в добавлении просеянного песка в пропорции один к трём. Но она не отличается особой прочностью. Это исправляется добавлением к этим составляющим 1/5 частей цемента. При этом сначала перемешивается цемент и глина, то есть вяжущие элементы, и только потом песок.

Иногда цемент заменяется известью, но с обязательным увеличением части до 1/2. Также можно добавлять гипс, но не более 1/4.


Соотношение компонентов

Доли разных компонентов в готовом растворе всегда отличаются, в зависимости от поставленной задачи и вида слоя. Типовые соотношения приведены ниже в таблице.

Раствор Соотношение компонентов (в частях)
Первый Второй Третий
цемент - песок 1 - 3 1 - 0,2 - 3 1 - 2
известь - песок 1 - 3 1 - 3 1 - 2
известь - песок 1 - 4 1 - 4 -
известь - глина - песок 0,2 - 1 - 3 0,2 - 1 - 5 0,2 - 1 - 3
известь - гипс - песок 1 - 1 - 2 1 - 0,5 - 2 1 - 1 - 5
глина - гипс - песок 1 - 0,2 - 3 1 - 0,2 - 3 -

Указанные пропорции не являются константой и могут корректироваться в каждом отдельном случае.

Готовые сухие смеси

Сегодня почти все производители предоставляют широкий ассортимент готовых сухих смесей. Всё что необходимо перед началом работы - это взять необходимый объём воды и готового сухого раствора, после чего всё тщательно перемешать, обычно два раза. Смесь готова к использованию. Как правило, они всегда немного дороже, чем стоимость входящих компонентов, если их приобретать отдельно.

Их главное преимущество состоит в отсутствии необходимости смешивать несколько разных элементов в нужных пропорциях. Кроме этого, продажа сыпучих материалов производится большими партиями, что не всегда удобно. Например, нет смысла приобретать мешок цемента весом 25 кг, если надо заделать небольшую дыру в стене. Поэтому при небольшом объёме работ готовая сухая смесь будет хорошей альтернативой.

Работа со штукатуркой

Грамотно подобранные пропорции раствора для штукатурки внутренних стен или наружных являются одним из ключевых моментов любого ремонта. Но даже идеальное соотношение окажется бесполезным, если оштукатуривание будет проводиться с нарушением правил нанесения на поверхность. Поэтому необходимо уделять внимание всем без исключения этапам. Только в этом случае можно ожидать положительного эффекта.

Очерёдность, толщина и количество слоёв имеет такое же значение, как и состав. Ошибка может привести к самым неприятным последствиям. Нанесение производится специальным инструментом, с обязательным временным промежутком, предусмотренным для каждого типа смеси.

При минимальном опыте проведения подобных работ, рекомендуется обязательное количество пробных попыток на небольших участках, чтобы оценить собственные возможности.

Инструменты и специфика отдельных поверхностей

Если работы проводятся своими руками, понадобится определённый строительный инструмент:

  • правило;
  • мастерок;
  • уровень;
  • шпатели разного размера;
  • шнур;
  • терка для затирки.

Нанесение первого и второго слоя выполняется мастерком, третьего - шпателем. Обычно первые слои наносятся на вспомогательную сетку для армирования. При нанесении финишного покрытия применяется гипсовая смесь.

Поверхности с большими перепадами обрабатываются с использованием специальных строительных маяков, облегчающих процесс нанесения и выравнивания штукатурки.

Вяжущие материалы - это минеральные и органические вещества, применяемые для изготовления бетонов и строительных растворов, скрепления (омоноличивания) отдельных элементов строительных конструкций, гидроизоляции (создания водонепроницаемых покрытий).

К минеральным вяжущим материалам относятся порошкообразные вещества, образующие при смешивании с водой пластичную массу, которая постепенно затвердевает, образуя прочное камневидное тело. Различают такие вяжущие материалы:

Гидравлические - материалы, которые после смешивания с водой и предварительного затвердевания на воздухе сохраняют свою твердость и продолжают упрочняться («набирать» прочность) в воде. Это разновидности цементов, гидравлическая известь.

Воздушные вяжущие - это вещества, которые способны твердеть и сохранять прочность только на воздухе (гипс, воздушная известь, жидкое стекло).

Глина

Глина - это мягкая, мелкодисперсная разновидность горных пород. При разведении водой образует пластичную массу, легко подвергающуюся любому формообразованию. При обжиге глина спекается, твердеет и превращается в камневидое тело, а при более высоких температурах обжига расплавляется и может достичь стекловидного состояния.

Глина состоит из различных минералов, поэтому бывает разного цвета. Служит вяжущим материалом для приготовления глиняных растворов, применяемых при кладке печей, штукатурке, изготовлении кирпича, глинобитных стен, глиносоломенной и других работах.

Глина имеет свойство впитывать воду до определенного предела, после которого она уже не в состоянии ее впитывать или пропускать через себя. Это свойство глины используется для создания насыпных гидроизоляционных слоев.

В зависимости от стойкости глины к температуре выделяют глины:

Лекгоплавкие (температуры плавления 1380);
- тугоплавкие (температура до 1550);
- огнеупорные (температура выше 1550).

Чистый каолин плавится при температуре выше 1750 градусов. Тугоплавкие глины служат сырьем для изготовления огнеупорных материалов. Различают тощие, средние и жирные глины. Тощие нередко применяют в чистом виде, получая обычный глиняный раствор, в средние по жирности глины добавляют немного песка, в жирные - много. Огнеупорную глину применяют для кладки внутренних частей из огнеупорного или тугоплавкого кирпича.



Известь

Известь получают путем обжига известняка при высоких температурах. Полученная таким образом известь называют известь-кипелка за то, что при контакте с водой идет активное выделение углекислого газа. Этот процесс называют «гашением». Для большинства случаев применения извести она должна быть «погашена». Погашенная известь превращается в тесто, которое можно хранить много лет. От продолжительного хранения свойства извести могут даже улучшиться.

Кипёлку молотую и пушенку следует хранить в сухих сараях с полами, поднятыми над землей не менее чем на 50 см. Негашеная известь опасна в пожарном отношении: при попадании на нее небольшого количества воды начинает гаситься, развивая высокую температуру, от которой загорается древесина.

Гасить известь следует так:

Быстрогасящаяся известь. В гасильный ящик (может быть обычное ведро) не более чем на 1/4 его высоты загружают известь. Затем ящик дополовины насыпанного слоя заливают водой (для определения количества воды известь можно отвести в сторону). Как только над известью начнут появляться водяные пары, а куски извести рассыпаться, ее тщательно перемешивают веслом и постепенно добавляют воду. Погасив известь, ее разбавляют, чтобы при перемешивании получилось однородное известковое молоко, которое через леток сливают в творильную емкость.

Среднегасящаяся известь. Насыпанную в ящик известь разравнивают и заливают водой до половины высоты насыпанного слоя. Как только куски извести начнут рассыпаться, гашение ее продолжают в той же последовательности, как было указано выше.

Медленногасящаяся известь. В гасильный ящик не более чем на 1/4 его высоты насыпают слой извести. Затем ее начинают постепенно увлажнять водой из лейки. Когда на кусках извести появятся трещины, что говорит о начавшемся процессе гашения, воду следует добавлять небольшими порциями, причем так, чтобы не охладить известь. Полученное тесто перемешивают, добавляют воду до получения известкового молока и сливают ее в творильную яму.

После гашения остаются куски извести - недожог и пережог. Их надо собрать в отдельный ящик, расколоть куски на две-три части и залить водой. Через определенное время некоторые из них погасятся, а остальные выбрасывают.

В гашеную известь добавляют воду, все перемешивают, а яму закрывают досками. Когда с поверхности извести исчезнет вода, доски снимают, а известковое тесто засыпают просеянным через частое сито песком слоем 200 мм. Чтобы тесто не замерзло зимой и не потеряло своих вяжущих свойств, сверху песка насыпают землю слоем не менее 600-700 мм. Яму огораживают и выдерживают в ней известь, пока погасятся все мельчайшие частицы (непогасившиеся частицы, попадая в раствор, могут вызвать в нем дутики).

Для кладочных растворов известковое тесто выдерживают не менее двух недель, для штукатурных - месяц. Выход известкового теста зависит от качества извести-кипелки. Из 1 кг первого сорта получают не менее 2,2 л густого известкового теста, из второго - не менее 2 и из третьего - не менее 1,5 л.

Известь можно заменить отходами промышленности - подзолом, окшарой или карбидным илом.

Подзол - отходы кожевенной промышленности (известь третьего сорта, смешанная с волосом). Подзол процеживают сквозь сито с ячейками не крупнее 10х10 мм, удаляя кусочки кожи и т. д. Перед использованием очищают от посторонних примесей и не менее месяца выдерживают. Рекомендуемый состав растворов (подзол:песок) 1:1-1,5.

Окшара - отходы текстильной промышленности (известь третьего сорта, смешанная с мелким шерстяным волосом). Как и подзол, требует процеживания сквозь сито. В свежем виде содержит до 2,5% хлора, вредного для организма человека. До употребления в дело надо выдержать в течение 5-6 месяцев в отвалах или ящиках на открытом воздухе до полного удаления хлора. Перед использованием выдерживается 5-6 месяцев. Состав - 1:1,5-3 (окшара:песок).

Подзол и окшара, смешанные с волосом, позволяют получить армированные растворы, которые почти не трескаются.

Карбидный ил - отходы карбида кальция при получении ацетилена (известь второго сорта, синеватого оттенка). Применять можно лишь после исчезновения запаха ацетилена, для чего его выдерживают на открытом воздухе в течение одного-двух месяцев. Рекомендуемый состав (карбидный ил:песок) - 1:1,2-1,5.



Цемент

Цемент - вяжущий материал, с помощью которого можно получать изделия и конструкции высочайшей прочности. Цемент получают в результате мелкодисперсного измельчения продуктов спекания одного из видов глины - мергеля или смеси известняка и глины, который проводится в специальных печах. При измельчении к продуктам спекания делаются дозированные добавки гипса, шлака, песка и других компонентов, что позволяет получать цемент с самыми различными свойствами.

Различают портландцемент, пластифицированный портландцемент, шлакопортландцемент, пуццолановый портландцемент. Все эти цементы имеют различные марки:

Портландцемент - 400, 500, 550 и 600;
- быстротвердеювдий портландцемент - 400 и 500;
- шлакопортландцемент - 300, 400 и 500;
- быстротвердеющий шлакопортландцемент - 400.

Для обозначения максимальных прочностных качеств цемента применяется понятие марка. Марка 400 обозначает, что в заводской лаборатории при пробном испытании затвердевшего цементного кубика с ребром 100 мм при раздавливании на прессе он выдержал нагрузку не менее 400 кг/см2. Наиболее распространенными являются марки от 350 до 500. Изготавливаются же марки цемента до 600-й и даже 700-й марки.

Все цементы имеют достаточно быстрое время твердения. Начало твердения - схватывания - лежит в пределах 40-50 мин, а конец твердения около 10-12 часов. Цементы применяют для изготовления бетонных и железобетонных конструкций, приготовления строительных растворов высокой прочности.

Цемент и вяжущие вещества продают навалом или в бумажных мешках с указанием марки. Хранят их в сухих местах не более 6 месяцев. Даже при самом тщательном хранении цемент в течение года может потерять до 40% прочности.

Гипс

Гипс (от греч. gypsos - мел, известь) - минерал, водный сульфат кальция. Встречаются преимущественно в виде сплошных зернистых (алебастр) и волокнистых (селенит) масс, а также различных кристаллических групп (гипсовые цветы). Чистый гипс бесцветен и прозрачен, при наличии примесей имеет белую, серую, желтоватую, розовую, бурую и другие окраски. Осаждается из водных растворов, богатых сульфатными солями, при усыхании морских лагун, соленых озер.

Гипс используют для изготовления вяжущих материалов, внутренних отделочных работ, гипсования почвы, в медицине. Его применяют также для снятия масок, моделирования скульптуры, создания рельефных украшений (лепнины) в помещениях.

Гипсовые вяжущие материалы получают путем термической обработки и измельчения природного гипсового камня и некоторых гипсосодержащих промышленных отходов (глиногипса, фосфогипса, борогипса). Качество гипсовых вяжущих зависит от предела прочности при сжатии и изгибе, сроков схватывания, степени помола, водопотребности при затворении.

По условиям термической обработки гипсовые вяжущие материалы делятся на две группы:

1. низкообжиговые (относятся строительный, формовочный, высокопрочный гипсы и гипсоцементно-пуццолановое вяжущее);
2. высокообжиговые (относят ангидритовый цемент и эстрих-гипс).

Марки гипса:

Марка А - быстротвердеющий (конец схватывания менее 15 минут);
- марка Б - нормальнотвердеющий (конец схватывания 30 минут).

Гипс строительный (старое название алебастр) - достаточно тонкий порошок белого или сероватого цвета, изготовляемый из гипсового камня путем обжига и помола или помола и обжига. Выпускается трех сортов. Начало схватывания гипса должно наступать не ранее 4 мин, конец - не ранее 6 мин, но не позднее 30 мин после затворения теста.

Выпускается гипс 12 марок. Для строительных работ применяют гипсы от марки Г-5 до марки Г-25, т. е. выдерживающие на сжатие от 5 до 25 кг/см2, но можно применять и более высокие марки. Самая высокая марка гипса - 250 кг/см2.

Из-за быстрого схватывания большие порции гипса употребить в дело практически невозможно. Поэтому в него добавляют различные замедлители - известковый раствор, животный клей (в виде клеевой воды крепостью от 0,5 до 2%), на котором и затворяют гипс. Чем больше в воде клея, тем длиннее срок схватывания гипса. При схватывании и твердении гипс увеличивается в объеме до 1%, что имеет важное практическое значение при многих строительных работах.

Применение глины в качестве добавки в смешанных цементных растворах наряду с диатомовыми землями и обычно применяемой известью. В первом приближении можно считать, что содержание глины по весу по отношению к цементу не должно превосходить 1:1 — 1,25: 1. При большей величине добавки глины качество растворов в отношении их морозостойкости и коэфициента размягчения может значительно снизиться, почему в настоящее время еще нельзя судить о пригодности таких растворов для кирпичной кладки. Большое количество проведенных испытаний не выявило каких- либо отрицательных- свойств цементно-глиняных растворов, которые могли бы повлиять на суждение о возможности их применения. Наоборот, испытания доказали в известных пределах ценные качества цементно-глиняных растворов, не говоря уже о том, что в большинстве случаев стоимость их ниже аналогичных растворов на других добавках. Однако качество применяемой глины, повидимому, все же играет существенную роль, так как различные глины давали в наших опытах достаточно разные результаты. В частности, глины с большим содержанием органических веществ давали растворы с наихудшими показателями. Наилучшие результаты в различных случаях испытаний и по различным характеристикам показали различные глины. Однако, в большинстве эти лучшие показатели относились к случаям введения в растворы кирпичных глин. Несмотря на значительное различие в химическом составе применяемых нами глин, какой-либо определенной зависимости между качеством получаемых растворов и химическим составом глин установить в настоящее время не удалось. Это должно, новидимому, составить предмет дальнейших исследований в этой области.

Однако уже теперь можно наметить некоторые пути к оценке качества глин и встречающихся в них соединений, могущих оказать отрицательное влияние на свойства цементно-глиняных растворов. Глины, вообще говоря, по своему минералогическому и химическому составу настолько разнообразны, это обстоятельство дает некоторым исследователям возможность утверждать о «наличия стольких же разновидностей глины, сколько месторождений подвергается обследованию» (Г. Зальманг). Помимо этого, слоистый характер значительной части залеганий делает состав глины весьма пестрым даже и в одном и том же месторождении. Поэтому к выбору и применению глин в смешанных растворах следует относиться с очень большой осторожностью. К числу возможных примесей к глине, могущих оказать известное влияние на прочность и стойкость смешанного раствора во времени, следует отнести часто встречающиеся в них:
а) сульфиды — пирит и марказит;
б) органические вещества (растительные ткани, битуминозные вещества, углерод, гуминовые вещества, в частности, гумусовые кислоты;
в) некоторые легко растворимые соли в виде сульфатов железа (мелантерит), кальция (гипс), магния (эпсомит), калия и натрия, хлористый натрий и магний, растворимые силикаты щелочных и щелочно-земельных металлов, хлориды щелочных металлов.

Влияние пирита

Пирит в глине обычно встречается в виде зерен желтого цвета с металлическим блеском, кубиков и плоских розеток, видимых невооруженным глазом. Однако в так называемых квасцовых глинах пирит содержится и в мелкораспределенном состоянии, причем в этом случае он не может быть удален из глины даже путем отмучивания. По Райсу пирит можно встретить почти в каждом месторождении, но в глинах, залегающих у поверхности земли, его редко можно встретить в устойчивой форме, так как он на открытом воздухе быстро переходит в сульфат железа, а затем в лимонит (2Fe2Q3 3H2O), являющийся для смешанных растворов, по всем имеющимся данным, повидимому, безвредным.
Однако при разложении пирита и марказита освобождается серная кислота, образующая сульфаты с содержащимися в глине карбонатами кальция, магния или железа.
Надо отметить, что обычно глины, содержащие пирит или марказит, отбрасываются при производстве керамических изделий и идут в отвал. Во всяком случае глина ранее ее применения должна быть исследована на содержание в ней пирита.
Гуминовые кислоты являютея частью гуминовых веществ, растворимую в щелочах. По Свен-Одену можно вообще различать:

а) гумусовую кислоту, нерастворимую в воде, черно-бурого цвета;
б) торфяную, нерастворимую в воде, желто-бурого цвета,
в) фульво-кислоту, растворимую в воде, светложелтого цвета.

Гуминовые вещества, в свою очередь, делятся на гуминовые кислоты, гумины, которые растворяются в крепких щелочах лишь при долгом кипячении, и гумусовый уголь, вовсе нерастворимый в щелочах. Гуминовые кислоты при нагревании также переходят в нерастворимое в щелочах состояние. Химическое строение гуминовых кислот остается в общем недостаточно выясненным, однако считается доказанным присутствие в них группы СООН. Присутствие гуминовых кислот может быть оценено по показателю концентрации водородных ионов.
По данным проф. Швецова, можно вообще считать, что кислоты, содержащие только карбоксильную группу СООН, не оказывают особенно вредного действия на цементные растворы при добавлении их в воду затворения. Однако ввиду недостаточной выясненности химического строения гуминовых веществ и кислот вопрос о характере и степени возможного их влияния должен еще составить предмет планомерных исследований.

Отсутствие понижения прочности при затворении портландцемента на болотной воде, содержащей гуминовые вещества и, в частности, гуминовую кислоту, наблюдалось рядом исследователей. Д. Абрамс в 1924 году опубликовал результаты опытов по изучению прочности портландцементных растворов (в сроки от 90 дней до 2 1/2 лет), на основании которых можно установить отсутствие существенного понижения прочности растворов, затворенных на болотной воде.
Инженер Сперанский рядом экспериментов с естественными и искусственными водами, содержащими гуминовые вещества, также показал возможность использования их для затворения цементных растворов. В этих опытах исследуемых торфяниковых вод колебался от 4,6 до 6,3, окисляемость же находилась в пределах от 11 до 50 мг кислорода на литр воды. В глинах же, по данным Зальманга, содержание гуминовых веществ обычно находится в пределах 0—0,5% при pH от 7,1 до 4,8; лишь в особо загрязненных глинах, отличающихся по большей части темносерым или коричнево-черным цветом, содержание гуминовых веществ доходит до 2—2,5% при значении pH от 6 до 7.
В вышеуказанных опытах инж. Сперанского наблюдалось (в сроки до 90 дней) даже некоторое повышение прочности на сжатие образцов, затворенных на загрязненной воде, по сравнению с образцами, затворенными на дистиллированной воде (при хранении всех образцов в обычной чистой воде). Отсутствие серьезного влияния гуминовых веществ, введенных при затворении портландцемента, на прочность растворов можно объяснить наличием подавляющей массы цемента по сравнению с количеством вводимых и нейтрализуемых цементом реагентов.

Некоторое же наблюдаемое повышение прочности, применительно к общим данным проф. Б.Г. Скрамгаева и Г.К. Дементьева, может быгь объяснено некоторым повышением эффективности гидратации от действия кислот.
Таким образом можно считать, что гуминовые вещества и кислоты в случае нахождения их в воде затворения вряд ли должны оказывать серьезное отрицательное влияние на прочность строительных растворов для кладки. Все же в опытах глины с органическими примесями показывали наихудшие результаты и склонность к некоторому падению прочности в дальние сроки твердения.
Однако для глин с большим содержанием органических веществ нижеприводимые опыты Mache позволяют найти меры, способствующие уменьшению или устранению опасности от введения глин, содержащих в себе перегной.

В своих опытах Mache исследовал влияние введения чернозема, содержащего перегной, на прочность пластичных цементных растворов. Содержание перегноя в черноземе, определенное по методу М. Pietre, составляло 11,7%.

Рассматривая с этой точки зрения влияние присутствия перегноя, возможно думать, что и растворы с глинами, содержащими органические вещества, можно обезопасить от влияния последних путем введения дополнительной щелочи, в частности извести. Отсюда следует предположить, что трехкомпонентные растворы, предложенные проф. В.П. Некрасовым (цемент-известь-трепел или цемент-известь- глина), в некоторых случаях (введение небольших количеств извести при применении сырой глины и сырого трепела) с этой точки зрения смогут дать более высокие показатели прочности, нежели двухкомпонентные цементно-смешанные растворы.

Наряду с гуминовыми веществами в глине могут встречаться органические вещества и в других формах: а) в виде растительных тканей (листья, стебли, корни, куски древесных стволов), которые легко могут быть изъяты из глины при ее подготовке; б) в виде органических веществ битуминозного характера, влияние которых на качество цементного раствора может считаться вредным лишь в редких (например, в весьма вредной форме бурого угля) случаях;
в) в виде твердого углерода в модификациях, сходных с антрацитом, что не должно считаться вредным.

Так как значительное содержание подобного рода органических веществ характеризуется сероватой, синевато-серой и черной окраской глины, а иногда и видимыми вкраплениями, то необходимо воздерживаться от применения подобных глин для строительных растворов. Глины же иного цвета было бы желательно проверять на содержание в них органических веществ и устанавливать степень кислотности путем определения показателя pH (впредь до разработки и проверки более простых приемов исследования).

Надо отметить, что прокаливанием глины при температуре красного каления или длительным нагреванием при температуре около 250° (например при сушке перед помолом) можно освободиться от значительной части органических веществ.
В связи с этим стедует отметить, что, повидимому, применение глин, активизированных путем прокаливания, как это предлагалось вышеупомянутой инструкцией В.П. Некрасова (1933 г.), может быть уместным и выгодным в целом ряде случаев.
Наиболее опасными для цементно-глиняных растворов примесями в глине могут явиться, помимо органических веществ, легко растворимые соли. Органические вещества могут непосредственно вызывать некоторое понижение прочности раствора, наличие же растворимых coелей может проявляться с течением времени и привести к последующему выветриванию раствора в силу явлений миграции солей. Под выпетриваннем строительных материалов обычно понимается потеря ими прочности и частичное или полное разрушение под влиянием атмосферных и других факторов. Явления выветривания строительных растворов вообще в той или иной степени встречаются сравнительно часто, причем основные причины такого выветривания могут быть разбиты на две важнейших категории:

1) Плохое смешивание раствора, ведущее к (наличию ослабленных участков, выветривающихся под влиянием, главным образом, действия мороза; при плохом перемешивании раствора не может быть осуществлено надежное и полное сцепление элементов кладки. При отсутствии же должного сцепления легко возникают трещины и повреждения в кирпичной стене даже от незначительных осадков фундамента. Эти трещины и являются очагами распространения явлений выветривания под влиянием последующего попадания воды в подобные трещины и замерзания их.

2) Выветривание в силу химических и физических влияний имеет место, в частности, при наличии в компонентах растворов сульфатов, карбонатов и хлоридов. Из вышеуказанных возможных растворимых солей в отношении явления выветривания наиболее безвредным является карбонат кальция, а затем сульфат кальция и сульфат калия. Наиболее же опасными солями (в этом отношении явлются сульфаты натрия, например, глауберовая саль (Na 2 SQ 4 . 10Н 2 О), и сульфаты магния. Последняя соль особенно опасна в соединении с сульфатом калия, так как получающаяся тройная соль (K 2 S0 4 . MgS0 4 . 6Н 2 О) содержит значительное количество воды и кристаллизуется с значительным увеличением объема, еще большим, чем при кристаллизации сульфатов натрия.

В глине из сульфатов чаще всего встречается гипс, причем по данным Dawit и ряда других исследователей. содержание солей серной кислоты в глинах сильно колеблется и может быть довольно значительным. Например, по данным Nirsch. содержание SO3, в глине одного и того же месторождения колебалось от 0,016 до 0,271 %. Нужно, впрочем, отметить, что нередко и в обожженном кирпиче содержание SO3 доходит до 0,2—0,3%, что объясняется применением иногда для обжига угля со значительным содержанием соединений серы. Особенно часто высокое содержание S03 имеет место в сравнительно слабо обожженных сортах кирпича.
Таким образом выветривание кладки под влиянием сульфатов может иметь место также и вследствие наличия их в штучных элементах кладки.
Наряду с этим нужно отметить, что и в затвердевшем цементе, употребляемом для кладки, также может находиться ряд соединений, способствующих появлению выцветов. Разрушение раствора в швах кладки от явлений выцветания в общем происходит нижеследующим образом: влага, введенная в стену вместе с раствором, растворяет имеющиеся в наличии растворимые соли. По мере высыхания кладки с поверхности происходит движение растворимых солей по направлению к наружным поверхностям стены. В дальнейшем растворимые соли подходят к поверхности стены, где кристаллизуются в порах раствора и на поверхности. Так как эта кристаллизация происходит для значительной части растворимых солей с большим увеличением объема, то такая кристаллизация ведет к постепенному разрушению шва с поверхности, к отпаду штукатурки, частичному выкрашиванию кирпича, появлению ясно видимых налетов и т.п.

Явления выветривания особенно усиливаются при неизбежных колебаниях влажности, так как при изменении влажности среды большинство вышеуказанных солей то теряет, то вновь присоединяет кристаллизационную воду, меняя при этом объем и вызывая серьезные внутренние напряжения в теле раствора.
Простейшие исследования глины на содержание в ней соединений, способных (произвести выцветы на кладке, можно произвести нижеследующим способом: берется стеклянный цилиндр (или, что лучше, колба с узким горлышком) и наполняется дестиллированной водой; на верхнее отверстие цилиндра или колбы плотно укладывается притертый кирпич; после этого цилиндр переворачивается таким образом, чтобы дестиллированная вода проникла в кирпич. В дальнейшем кирпич просушивается, причем в случае наличия в нем растворимых солей таковые выступают в виде беловатого налета. Для целей испытания глины предварительно должен быть отобран кирпич, не имеющий такого налета. Далее испытуемая глина просушивается, размельчается и затворяется большим количеством дестиллированной воды. Полученное жидкое глиняное молоко выливается иа кирпич, предварительное испытание которого показало отсутствие в нем растворимых солей. В том случае, если в глине находятся растворимые соли, таковые проникают в кирпич и по просушивании выступят на его поверхности в виде беловатого налета. Наличие растворимых солей в глине можно оценить также с помощью выпаривания остатка из воды, отфильтрованной от глины. Наличие осадка укажет на наличие растворимых солей.

Из прочих примесей, встречающихся в глине, кроме вышеуказанных, большинство возможно даже признать полезным. К числу (подобных примесей относятся: кварц в виде тонких частиц и зерен обычного песка, кремнезем в амофорном состоянии (встречающийся обычно в глине лишь в очень небольших количествах), гидраты кремнезема, слюды, гидрослюды.
Влияние слюды оценивалось профессором Пономаревым, который при своих исследованиях системы цемент-слюда отмечал, что небольшие добавки измельченной слюды (в количестве 2 — 3%) не оказывают существенного влияния на прочность раствора, но повышают довольно резко связность получаемой массы.

Более значительные добавки слюды довольно серьезно понижали величины временного сопротивления растяжению и изгибу испытуемых образцов. Ожидать какого-либо вредного химического влияния слюды на вяжущую часть раствора нет оснований, если принять во внимание чрезвычайно высокую степень химической инертности слюд вообще. Наиболее опасным действием значительного количества слюды может явиться, как показывают исследования G.Kathrein, понижение морозостойкости раствора.

Так как глинах содержание слюды в огромном большинстве случаев весьма невысоко, то ожидать с этой стороны вредного влияния глины на смешанные цементно-глиняные растворы нет оснований. Гидраты глинозема, кремнезема и Окиси железа, иногда присутствующие в глинах в незначительном количестве, могут, по данным Rodt, оказать весьма благоприятное влияние на свойства раствора и, в частности, на его (прочность в дальние сроки твердения, связанного с высыханием.

Исследования, произведенные Михаэлисом над гелеобразными гидратами окиси кальция, глинозема, кремнезема и гидратом окиси железа, подвергнутыми высушиванию с целью частичного обезвоживания, показали возможность получения агрегатов весьма высокой прочности, особенно из гелей гидратов кремнезема и окиси железа. Влияние постоянно встречающейся в глинах окиси железа можно оценить и по опытам Грюна. По этим опытам введение 30% молотой окиси железа (считая от веса цемента) в цементно-песчаные растворы 1: 3 дает даже некоторое повышение прочности растворов на растяжение при весьма незначительных изменениях прочности на сжатие (10%). Таким образом влияние этой составляющей глины не может быть признано вредным.

Содержащиеся в глинах тонкая пыль и тонкий песок по этим же испытаниям Грюна, а также по ряду других исследований оказывают также скорее положительное, чем отрицательное действие «а плотность и прочность цементных растворов, особенно в длительные сроки твердения. Однако, надо отметить, что это будет иметь место, понятно, не при всяких количествах введенной добавки, а лишь в тех случаях, когда гранулометрический состав строительного раствора будет находиться в определенных пределах. (Кроме того надо подчеркнуть, что по вышеприведенным исследованиям Ферэ добавление тонких песчаных частиц несравненно более повышает сопротивление строительных растворов растяжению и величину сцепления, чем сопротивление сжатию. Это указывает, что вообще добавка мелких частиц способна оказывать достаточно благоприятное влияние на качества раствора в кладке, но что назначение величины добавки шины должно производиться с полным учетом получаемого гранулометрического состава строительного раствора. Гидрослюды, присутствующие всегда в глинах, (гидроокись железа, присутствующие в некоторых глинах кальцит, доломит, глауконит, полевые шпаты являются, повидимому, безвредными отощающими примесями.

В общем, при применении глин в смешанных растворах, с большинством из этих примесей приходится считаться, как с (грубозернистыми примесями, частично заменяющими собой песок в строительных растворах. При подобном подходе сильно песчанистые глины должны «водиться в строительные растворы с обязательным учетом содержания в них крупнозернистых включений, т. е. с соответствующим увеличением дозировки такой песчанистой глины и с уменьшением количества вводимого песка.

Как видно из вышеприведенного беглого перечня, наибольшее внимание при выборе глин должно быть обращено, повидимому, на содержание в них растворимых солей и, в частности, сульфатов. Опыты, проведенные в Промакадемии имени тов. Сталина по применению сильно засоленных лессов, показали, что наличие в строительном растворе значительного количества растворимых солей приводит к появлению чрезвычайно сильно развитых выцветов на поверхности образцов, сопровождающихся размягчением и разрыхлением наружной их корки. В этом отношении особенно неприятными оказались сернокислые соли натрия, магния и калия. Так как растворимые соли легко могут оказать вредное влияние на раствор и кладку (явление эффлоресценции — появление выцветов), то глину, содержащую значительное количество таких солей можно использовать лишь после длительного ее вылеживания, способствующего выщелачиванию сульфатов или после обработки ее бариевыми соединениями.

Однако и тот и другой приемы могут дать эффект лишь в случае относительно невысокого содержания в глине растворимых солей и вдобавок лишь по отношению к некоторым из них. Опасность непосредственного влияния сульфатов на портландцемент в смешанном растворе несколько, повидимому, снижается как вследствие предполагаемого действия глины, аналогичного действию слабых пидравшических (добавок, так и особенно в случаях применения растворов для кладки, находящейся в воздушных условиях. Так как пирит, а также гипс и другие сульфаты являются нежелательными примесями к глине и при производстве из нее кирпича, то всякая кирпичная тайна обычно подвергается оценке с точки зрения наличия или отсутствия в ней подобных вредных минеральных примесей, почему данные и подобных испытаний могут быть использован и при выборе глин для растворов.

Предисловие

Основных материалов для кладки печей всего четыре: это глина, песок, цемент и известь. Используя эти компоненты, печники выполняют свою нелегкую, но почетную работу.

Необходимые инструменты и материалы

Вода Глина Известь Кирпич Песок Цемент

Cодержание

Основных материалов для кладки печей всего четыре: это глина, песок, цемент и известь. Используя эти компоненты, печники выполняют свою нелегкую, но почетную работу. Несмотря на свою простоту, все материалы для изготовления печей должны быть исключительно высшего качества, чтобы каменки исполняли не только свою основную функцию (отапливали помещение), но и просто радовали глаз.

Какую глину и глиняные смеси использовать для кладки печи

Обычная, красная, глина для кладки печей является основным связывающим материалом, который применяется при изготовлении раствора для кладки массива печи, дымовых каналов и частей дымовой трубы, находящихся под крышей здания.

Прочность и качество кладки во многом зависят от пластичности, усушки, максимальной температуры плавления или спекания. Жирность можно приблизительно вычислить по объемной массе и количеству примесей песка. Если масса глины составляет 1300-1400 кг/м3, то она считается жирной, при массе 1450-1500 кг/м3 - средней. Следует учитывать, что чем меньше жирность глины, тем больше в ней примесей песка. Однородную глину используют для изготовления огнеупорных изделий.

Глиняная смесь для кладки печей образуется при добавлении воды. В этом случае глина значительно увеличивается в объеме, а при высушивании и обжиге ее объем заметно сокращается. Пластичность материала зависит от количества примесей, величины частиц глиняного вещества, водопоглощения и многих других факторов. В результате усушки глина, характеризующаяся средней пластичностью, сокращается в объеме примерно на 7%.

Обыкновенную глину не рекомендуется использовать для приготовления растворов для кладки и оштукатуривания в помещениях с повышенной влажностью. При температуре ниже О °С она может вспучиться и увеличиться в объеме, а кирпичная кладка станет менее плотной и прочной. Поэтому глиняный раствор не следует применять для кладки оголовков дымовых труб, наружных стенок дымовых и вентиляционных каналов, а также для устройства фундаментов под печи и коренные дымовые трубы.

При возведении печей глину можно применять в виде растворов. Какая глина для печи лучше всего подходит для этих целей? Для этого используется обыкновенная, тугоплавкая и огнеупорная глина. Красную глину используют для создания растворов, предназначенных для возведения массивов печей из обычного глиняного кирпича. А какую глину использовать для печи при устройстве стен топливников, дымооборотов (каналов для дымовых газов) и сводов печей, возводимых из тугоплавкого кирпича? Здесь потребуется тугоплавкая глина с добавлением песка. Кладку огнеупорного шамотного кирпича следует осуществлять на растворе из огнеупорной глины, добавляя в него вместо песка измельченный шамот в пропорции 1:1.

Песок для кладки печи

Природный песок, который получается в результате разрушения горных пород, чаще всего применяют в качестве мелкого заполнителя для приготовления бетона и строительного раствора. Размер зерен такого песка составляет 0,15-0,5 мм. В зависимости от зернового состава песок можно разделить на четыре вида: крупный, средний, мелкий и очень мелкий.

Каждый вид определяется путем просеивания через стандартный набор сит с разными размерами и формами отверстий. Сита с квадратными отверстиями имеют размеры 0,14, 0,315, 0,63 и 1,25 мм, а с круглыми - 2,5, 5 и 10 мм. В результате проведенного просеивания определяется модуль крупности песка.

Для приготовления растворных смесей для кладки печей можно использовать все четыре типа песка, а для бетонных смесей применяют все, кроме очень мелкого песка.

Сухая смесь для кладки печей

Для строительного раствора это содержание не должно быть больше 20%. Максимально допустимый размер зерен песка в сухих смесях для кладки печей, должен составлять не более 5 мм.

В растворных смесях для кладки печей используется горный песок с размером зерен до 1 мм, имеющих угловатую форму и шероховатую поверхность частиц. Благодаря такому строению частиц обеспечивается максимальное сцепление между пленкой глины и отдельными песчинками. Это значительно увеличивает прочность швов кирпичной кладки, объем которых при усыхании остается практически неизменным, а кладка становится более плотной. Речной песок не рекомендуется применять в растворах для кладки печей, так как из-за округлой и гладкой формы его зерен невозможно получить тонкие швы.

Добавляя в растворы для кладки печей песок, необходимо следить, чтобы он был чистым, без каких-либо примесей, так как частицы ила, извести, земли и других загрязняющих веществ оказывают негативное воздействие на вяжущие свойства раствора. Поэтому загрязненный песок необходимо сначала промыть и очистить, просеяв через сито или металлическую сетку с отверстиями размером 1-1,5 мм, а затем добавлять в раствор.

Цемент для кладки печей

Цемент для печей представляет собой гидравлическое (затвердевающее на воздухе и в воде) вяжущее вещество, которое производят путем совместного измельчения клинкера и различных минеральных добавок. Среди цементов, используемых для замешивания строительных растворов и бетонных смесей, выделяют портландцемент, безусадочный и расширяющийся, глиноземистый цемент и другие виды. В печных работах применяется в основном портландцемент, который получают в результате тонкого помола клинкера, производимого путем обжига до спекания смеси известняка и глины.

Марка цемента для кладки печей определяется различной механической прочностью (кгс/см2) при его затвердевании: 300, 400, 500, 600. Согласно ГОСТ 23464-79, цементы делятся на высокопрочные (марки 550, 600 и выше), повышенной прочности (марка 500), рядовые (марки 300 и 400) и низкомарочные (ниже 300). Марка зависит от тонкости помола.

По сравнению с такими вяжущими веществами, как известь и глина, цементы имеют способность быстро схватываться.

В печном деле цемент используется при кладке фундаментов и оснований под печи, а также оголовков дымовых труб. Он применяется не в чистом виде, а в простых и сложных растворах.

Известь для кладки печей

Строительная известь (ГОСТ 9179-77) входит в состав многих строительных растворов и бетонных смесей. По условиям затвердевания она делится на гидравлическую, которая твердеет на воздухе и в воде, и воздушную, которая становится твердой только на воздухе. Производят глину путем обжига известняков в специальных вращающихся или шахтных печах.

В результате обжига образуется негашеная известь. Ее гашение происходит при поливании водой. Таким образом, она как бы кипит, распадаясь на мелкие части, и значительно увеличивается в объеме.

Негашеная известь по продолжительности гашения бывает быстрогасящаяся (не более 8 минут) , среднегасящаяся (не более 25 мину т) и медленногасящаяся (более 25 минут).

Гидравлическая строительная известь применяется при производстве строительных растворов для кладки и оштукатуривания в помещениях с повышенной влажностью.

Кроме того, она используется для получения бетонов низких марок и производства некоторых вяжущих веществ. Воздушная строительная известь чаще всего применяется при изготовлении растворов для надземной кладки. В печном деле она подходит для растворов, предназначенных для кладки фундаментов под печи и коренные дымовые трубы.

Также воздушная строительная известь используется при кладке оголовков дымовых труб и для побелки наружных поверхностей печей и дымоходов.

Вода, которая используется для приготовления бетонной смеси и строительного раствора, должна быть без примесей, так как они препятствуют нормальному схватыванию и затвердеванию вяжущего материала. Поэтому для этих целей больше всего подходит обычная питьевая или дождевая вода. Категорически запрещено использовать воду, содержащую примеси кислот, солей, масел, а также сточные воды.

Несмотря на огромную ассортиментную линейку строительных смесей, материалы, проверенные временем, востребованы всегда. Глиняная штукатурка имеет тысячелетнюю историю, и зарекомендовала себя только с лучшей стороны. Существует богатая рецептура растворов, замешанных на глине, выбор компонентов зависит от условий эксплуатации отделки.

В статье мы расскажем о разновидностях смесей, как сделать раствор с глиной для штукатурки, и приведем несколько полезных советов мастеров, .

Глиняная штукатурка – состав и рецептура

Существует множество составов глиняной штукатурки, но универсального рецепта не существует, качество состава зависит от компонентов. И главный из них – глина для штукатурки стен, ее разделяют на 2 вида: легкая и жирная, последняя наиболее пригодна.

Чтобы проверить качество, следует из глины скатать шарик небольшого диаметра, положить на ровную поверхность и сплющить. Если края остались целые, то материал подходит для штукатурки, пошли трещины — состав малопригоден. Другой тест – скатать жгутик длиной 200-300 мм, сечением 10-20 мм и аккуратно согнуть его, у качественного материала края не растрескиваются.

Способы проверить качество материала

Таблица рецептов, пропорции в частях:

Глина Гипс Песок Цемент Опилки, волокно Известь Асбест
3 1 1 2 1/5
4 2 1 1 1/25
1 2 1 1/10
1 3
1 3 0,5-1

Как избежать трещин при штукатурке глиненым раствором

Перед работами хорошо смочить поверхности. Основное правило – подобрать глину хорошего качества, грамотно приготовить раствор. Укрепить поверхности или дранкой (тонкие рейки, набитые по диагонали крест на крест), для тонких слоев – джутовая или льняная мешковина. Наносить глиняную штукатурку лучше в 2 слоя: первый толстый – глина-песок-солома, второй – финишный, глина-цемент-песок-известь, чтобы добиться гладкой поверхности.


Дранка выполняет две функции – обрешетка для утеплителя и армирующая сетка для отделки

Штукатурка деревянного дома внутри глиной – секреты мастеров

Внутри дома глиной начинается с тщательной заделки стыков паклей, это создаст дополнительный теплоизоляционный слой и поможет уменьшить расход смеси. Деревянные стены следует обработать антисептиком, далее гидроизоляция – на стены набивается рубероид, стыки внахлест 100 мм. После чего делается обрешетка и наносится штукатурка деревянного дома глиной.

Важно: Для деревянных домов армирующую сетку из металла использовать не рекомендуется. Дерево и глина – микрофобные материалы, а влажность приведет к коррозии металла и порче отделки.

Это экологичный, практичный и недорогой способ отделки, но не смотря на явное преимущество и недостатки глиняной штукатурки брусового дома тоже существуют: дерево работает под воздействием дельты температуры и влажности, со временем неизбежны на поверхности мелкие трещины. Но и их можно обернуть в достоинства, превратив в ультрамодный кракелюр.


Текстура отделки смесью с добавлением опилок

Дизайн

Глина – почти универсальный материал, благодаря добавкам и колеру, можно добиться различных оттенков материала: белый, терракот, серый, бежевый и пр. Кроме того, раствор можно наносить разными техниками . Здесь главное – проявить свою фантазию, и в результате вы получите не просто прочную, но и красивую отделку.

Включайся в дискуссию
Читайте также
Рамки для картин своими руками из дерева
Геометрические фигуры в декоре интерьера
Люстра с дистанционным управлением своими руками